![]() |
||||||||||||
|
Аннотация В работе Н. К. Гаврилова и Л.П.Шильникова [1] было установлено, что системы с гомоклиническими касаниями могут разделять системы Морса–Смейла и системы со сложной динамикой. Причем при пересечении такой границы счетное множество периодических траекторий возникает сразу — «взрывом». В работе Ньюхауса и Пэлиса [2] было показано, что в этом случае существует счетное множество интервалов значений параметра расщепления, отвечающих грубым (гиперболическим) системам. В настоящей работе мы показываем, что интервалы гиперболичности имеют естественные бифуркационные границы. Таким образом, явление гомоклинического Ω-взрыва в случае двумерных диффеоморфизмов получает в определенном смысле законченное описание. Ключевые слова: гомоклиническое касание, гетероклинический контур, Ω-взрыв, гиперболическое множество. ![]() S.V. Gonchenko, O.V. Sten'kin. Homoclinic Ω-explosion: hyperbolicity intervals and their boundaries. Rus. J. Nonlin. Dyn., 2011, V.7, №1, p. 3-24 Abstract It has been established by Gavrilov and Shilnikov in [1] that, at the bifurcation boundary separating Morse-Smale systems from systems with complicated dynamics, there are systems with homoclinic tangencies. Moreover, when crossing this boundary, infinitely many periodic orbits appear immediately, just by "explosion". Newhouse and Palis have shown in [2] that in this case there are infinitely many intervals of values of the splitting parameter corresponding to hyperbolic systems. In the present paper, we show that such hyperbolicity intervals have natural bifurcation boundaries, so that the phenomenon of homoclinic Ω-explosion gains, in a sense, complete description in the case of two-dimensional diffeomorphisms. Keywords: homoclinic tangency, heteroclinic cycle, Ω-explosion, hyperbolic set. |
|||||||||||