![]() |
||||||||||||
|
Аннотация Нелокальные обобщения нелинейного волнового уравнения возникают в целом ряде задач современной математической физики. Известно, что при переходе от локального к нелокальному описанию модель может приобретать новые свойства, в частности, могут возникать новые типы решений. В данной работе исследуется вопрос о размерности множества решений типа бегущих волн нелокального нелинейного волнового уравнения. Нелокальность при этом представлена оператором типа свертки, который заменяет оператор второй производной в дисперсионном члене. Основные результаты получены для случая, когда нелинейность ограничена, а ядро оператора представлено суммой экспонент с весами (так называемое ядро E-типа). В простейшем частном случае (ядро Каца–Бейкера) показано, что решения данного уравнения образуют непрерывное трехпараметрическое семейство (считая, что решения, переходящие друг в друга при сдвиге по независимой переменной, не различаются). Далее показано, что трехпараметрическое семейство решений, вообще говоря, сохраняется и в случае ядра E-типа общего вида, при выполнении некоторых дополнительных условий. Выражение «вообще говоря» в данном случае означает трансверсальность пересечения некоторых многообразий в надлежащим образом введенном фазовом пространстве. Ключевые слова: нелокальное нелинейное волновое уравнение . ![]() G.L. Alfimov. On the dimension of the set of solutions for nonlocal nonlinear wave equation . Rus. J. Nonlin. Dyn., 2011, V.7, №2, p. 209-226 Abstract Nonlocal generalizations of nonlinear wave equation arise in numerous physical applications. It is known that switching from local to nonlocal description may result in new features of the problem and new types of solutions. In this paper the author analyses the dimension of the set of travelling wave solutions for а nonlocal nonlinear wave equation. The nonlocality is represented by the convolution operator which replaces the second derivative in the dispersion term. The results have been obtained for the case where the nonlinearity is bounded, and the kernel of the convolution operator is represented by a sum of exponents with weights (so-called E-type kernel). In the simplest particular case, (so-called Kac–Baker kernel) it is shown that the solutions of this equation form a 3-parametric set (assuming the equivalence of the solutions which differ by a shift with respect to the independent variable). Then it is shown that in the case of the general E-type kernel the 3-parametric set of solutions also exists, generically, under some additional restrictions. The word «generically» in this case means some transversality condition for intersection of some manifolds in a properly defined phase space. Keywords: nonlocal nonlinear wave equation . |
|||||||||||