![]() |
||||||||||||
|
Аннотация Рассматривается система, образованная «несущим» твердым телом и «несомой» материальной точкой, которая движется по заданному закону вдоль кривой, жестко скрепленной с телом. Движение происходит в однородном поле тяжести над неподвижной абсолютно гладкой горизонтальной плоскостью. При движении несущее тело может соударяться с плоскостью. Величина коэффициента восстановления при ударе считается произвольной. Получены уравнения, описывающие как свободное движение системы над плоскостью, так и моменты соударений. Указано несколько частных решений уравнений движения, и в некоторых случаях исследована их устойчивость.
Ключевые слова: динамика систем твердых тел, соударение, периодическое движение, устойчивость . ![]() A.P. Markeev. On the dynamics of a rigid body carrying amaterial point. Rus. J. Nonlin. Dyn., 2012, V.8, №2, p. 219-229 Abstract In this paper we consider a system consisting of an outer rigid body (a shell) and an inner body (a material point) which moves according to a given law along a curve rigidly attached to the body. The motion occurs in a uniform field of gravity over a fixed absolutely smooth horizontal plane. During motion the shell may collide with the plane. The coefficient of restitution for an impact is supposed to be arbitrary. We present a derivation of equations describing both the free motion of the system over the plane and the instances where collisions with the plane occur. Several special solutions to the equations of motion are found, and their stability is investigated in some cases. In the case of a dynamically symmetric body and a point moving along the symmetry axis according to an arbitrary law, a general solution to the equations of free motion of the body is found by quadratures. It generalizes the solution corresponding to the classical regular precession in Euler’s case. It is shown that the translational motion of the shell in the free flight regime exists in a general case if the material point moves relative to the body according to the law of areas. Keywords: rigid body dynamics, collision, periodic motion, stability. |
|||||||||||