![]() |
||||||||||||
|
Аннотация Изучается двумерная задача о движении твердого тела в безграничном объеме идеальной жидкости, совершающей безвихревое движение и покоящейся на бесконечности. Тело снабжено гиростатом, а также ротором Флеттнера, благодаря которому на тело действует гироскопическая сила (эффект Магнуса). Угловые скорости вращения гиростата и ротора предполагаются известными функциями времени (управлениями). Уравнения движения представлены в виде уравнений Кирхгофа, и в случае кусочно-постоянных управлений указаны законы сохранения. С их помощью уравнения движения приведены к неавтономной системе дифференциальных уравнений первого порядка на группе перемещений конфигурационного пространства. Численно, с использованием генетических алгоритмов, решена задача оптимального управления телом для различных типов управляющих воздействий. Ключевые слова: идеальная жидкость, самопродвижение, ротор Флеттнера. ![]() S.M. Ramodanov, V.A. Tenenev, D.V. Treschev. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid. Rus. J. Nonlin. Dyn., 2012, V.8, №4, p. 799-813 Abstract We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are represented in the form of the Kirchhoff equations. In the case of piecewise continuous controls, the integrals of motion are indicated. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. An optimal control problem for several types of the inputs is then solved using genetic algorithms. Keywords: perfect fluid, self-propulsion, Flettner rotor. |
|||||||||||