![]() |
||||||||||||
|
Аннотация В работе представлены линеаризованные уравнения движения для модели велосипеда, впервые предложенной в работе [86]. Данная модель состоит из четырех продольно симметричных частей, соединенных между собой идеальными шарнирами: двух колес, рамы и переднего узла — руля и вилки. Колеса предполагаются осесимметричными бесконечно тонкими дисками, движущимися без проскальзывания по опорной поверхности. В остальном геометрия и распределение масс в модели предполагаются произвольными. Данная консервативная неголономная система имеет семь степеней свободы. В линеаризованных уравнениях движения из этих степеней свободы существенную роль играют только три: угол наклона велосипеда к плоскости движения, угол поворота руля и угол, определяющий вращение заднего колеса. Для облегчения реализации модели мы выводим уравнения движения для этих трех переменных методически. Полученные уравнения движения пригодны, например, для изучения устойчивости прямолинейного равномерного движения неуправляемого велосипеда. Уравнения движения выводились вручную двумя способами и проверялись затем путем численного исследования. В почти вековой истории исследований велосипеда имеются работы, в которых получены уравнения движения велосипеда полностью согласующиеся с нашими. В других работах получены уравнения, не согласующиеся с тем, что получилось у нас. Нами предложены два теста, позволяющие проверить правильность вывода уравнений движения велосипеда, имеющихся в других работах, а также правильность численного исследования этих уравнений, если таковое проводилось. Помимо этого, полученные нами результаты могут служить для дальнейшего исследования динамики велосипеда. Для тестовой модели велосипеда мы аккуратно вычисляем характеристические значения (корни характеристического уравнения) и диапазон скоростей, в котором равномерное прямолинейное движение неуправляемого велосипеда является устойчивым, подтверждая известный уже долгие годы результат, что данная консервативная система может быть асимптотически устойчивой. Ключевые слова: велосипед, мотоцикл, динамика, линейные уравнения, устойчивость, неголономная система. ![]() J.P. Meijaard, J.M. Papadopoulos, A. Ruina, A.L. Schwab. Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Rus. J. Nonlin. Dyn., 2013, V.9, №2, p. 343-376 Abstract We present canonical linearized equations of motion for the Whipple bicycle model consisting of four rigid laterally symmetric ideally hinged parts: two wheels, a frame and a front assembly. The wheels are also axisymmetric and make ideal knife-edge rolling point contact with the ground level. The mass distribution and geometry are otherwise arbitrary. This conservative non-holonomic system has a seven-dimensional accessible configuration space and three velocity degrees of freedom parametrized by rates of frame lean, steer angle and rear wheel rotation. We construct the terms in the governing equations methodically for easy implementation. The equations are suitable for e.g. the study of bicycle self-stability. We derived these equations by hand in two ways and also checked them against two nonlinear dynamics simulations. In the century-old literature, several sets of equations fully agree with those here and several do not. Two benchmarks provide test cases for checking alternative formulations of the equations of motion or alternative numerical solutions. Further, the results here can also serve as a check for general purpose dynamic programs. For the benchmark bicycles, we accurately calculate the eigenvalues (the roots of the characteristic equation) and the speeds at which bicycle lean and steer are self-stable, confirming the century-old result that this conservative system can have asymptotic stability. Keywords: bicycle, motorcycle, dynamics, linear, stability, non-holonomic. |
|||||||||||