![]() |
||||||||||||
|
Аннотация Обсуждается базовая задача динамики механических систем со связями — нахождение ускорений в зависимости от фазовых переменных. Показано, что в случае кулонова трения эта задача равносильна решению некоторого вариационного неравенства. Получены общие условия существования и единственности решения. Рассмотрен ряд примеров. Для систем с идеальными связями обсуждаемая проблема была решена Лагранжем в его «Аналитической динамике» (1788), что стало поворотным пунктом в математизации механики. В 1829 году Гаусс вывел свой принцип, позволяющий получить решение из условия минимума некоторой квадратичной функции от ускорений, названной «принуждением». В 1872 году Джеллеттом были представлены примеры неединственности решения в системах с трением покоя, а в 1895 году Пенлеве показал, что при наличии трения скольжения наряду с неединственностью возможно отсутствие решений. Такие ситуации оказались серьезным препятствием к развитию теории, математических моделей и практического использования систем с сухим трением. Неожиданным и красивым продвижением явилась работа Пожарицкого, где автор распространил принцип Гаусса на частный случай, когда нормальные реакции могут быть определены из уравнений динамики независимо от величин коэффициентов трения. Тем не менее, для систем с трением Кулона, где нормальные реакции априори неизвестны, до сих пор имеются лишь частные результаты о существовании и единственности решений. Предлагаемый здесь подход основан на комбинации принципа Гаусса в форме реакций с представлением алгебраической нелинейной системы уравнений относительно нормальных реакций в форме вариационного неравенства. Теория таких неравенств включает в себя результаты о существовании и единственности, а также развитые методы решения. Ключевые слова: принцип наименьшего принуждения, сухое трение, парадоксы Пенлеве . ![]() A.P. Ivanov. On the variational formulation of dynamics of systems with friction. Rus. J. Nonlin. Dyn., 2013, V.9, №3, p. 479-498 Abstract We discuss the basic problem of dynamics of mechanical systems with constraints-finding acceleration as a function of the phase variables. It is shown that in the case of Coulomb friction, this problem is equivalent to solving a variational inequality. The general conditions for the existence and uniqueness of solutions are obtained. A number of examples is considered. For systems with ideal constraints discussed problem has been solved by Lagrange in his “Analytical Dynamics” (1788), which became a turning point in the mathematization of mechanics. In 1829, Gauss gave his principle, which allows to obtain the solution as the minimum of a quadratic function of acceleration, called “constraint”. In 1872 Jellett gaves examples of nonuniqueness of solutions in systems with static friction, and in 1895 Painlev´e showed that in the presence of friction, together with the non-uniqueness of solutions is possible. Such situations were a serious obstacle to the development of theories, mathematical models and practical use of systems with dry friction. An unexpected and beautiful promotion was work by Pozharitskii, where the author extended the principle of Gauss on the special case where the normal reaction can be determined from the dynamic equations regardless of the values of the coefficients of friction. However, for systems with Coulomb friction, where the normal reaction is a priori unknown, there are still only partial results on the existence and uniqueness of solutions. The approach proposed here is based on a combination of the Gauss principle in the form of reactions with the representation of the nonlinear algebraic system of equations for the normal reactions in the form of a variational inequality. The theory of such inequalities includes the results of existence and uniqueness, as well as the developed methods of solution. Keywords: principle of least constraint, dry friction, Painlevé paradoxes. |
|||||||||||