А.П. Иванов. Исследование разрывных бифуркаций в негладких динамических системах. Нелинейная динамика, 2012, т.8, №2, с. 231-247

Аннотация

Рассматриваются динамические системы с разрывной правой частью. Известно, что траектории таких систем негладкие, а фундаментальная матрица решений разрывна. Это обусловливает наличие так называемых разрывных бифуркаций, в результате которых мультипликаторы меняются скачкообразно. Предложен метод ступенчатого сглаживания, позволяющий свести разрывные бифуркации к последовательности типичных бифуркаций: седло-узел, удвоение периода или Хопфа. Полученные результаты применяются к анализу известной системы с трением «ползун на ленте», служащей популярной моделью для описания фрикционных автоколебаний тормозной колодки. Ранее эта модель исследовалась лишь численно, что не позволяло сделать общие выводы о наличии автоколебаний. Новый метод позволяет провести полное качественное исследование возможных типов разрывных бифуркаций в этой системе и выделить области параметров, соответствующие устойчивым периодическим режимам.

Ключевые слова: негладкие динамические системы, разрывные бифуркации, осциллятор с сухим трением .

Полнотекстовая версия PDF (420 Kb)

A.P. Ivanov. Analysis of discontinuous bifurcations in nonsmooth dynamical systems. Rus. J. Nonlin. Dyn., 2012, V.8, №2, p. 231-247

Abstract

Dynamical systems with discontinuous right-hand sides are considered. It is well known that the trajectories of such systems are nonsmooth and the fundamental solution matrix is discontinuous. This implies the presence of the so-called discontinuous bifurcations, resulting in a discontinuous change in the multipliers. A method of stepwise smoothing is proposed allowing the reduction of discontinuous bifurcations to a sequence of typical bifurcations: saddle-node, period doubling and Hopf bifurcations. The results obtained are applied to the analysis of the well-known system with friction a block on the moving belt, which serves as a popular model for the description of selfexcited frictional oscillations of a brake shoe. Numerical techniques used in previous investigations of this model did not allow general conclusions to be drawn as to the presence of self-excited oscillations. The new method makes it possible to carry out a complete qualitative investigation of possible types of discontinuous bifurcations in this system and to point out the regions of parameters which correspond to stable periodic regimes.

Keywords: non-smooth dynamical systems, discontinuous bifurcations, oscillator with dry friction.

На главную страницу   Написать письмо   Карта сайта