![]() |
||||||||||||
|
Аннотация В работе исследуется динамика систем, описывающих качение без проскальзывания и верчения (rubber-rolling) различных твердых тел по плоской и сферической поверхности. Показано, что в зависимости от геометрии поверхности тела и его распределения масс возникает иерархия возможных типов динамического поведения. Найдены новые интегрируемые случаи и случаи существования инвариантной меры. Кроме того, на примере этих систем продемонстрировано, что существование нескольких нетривиальных инволюций в обратимых диссипативных системах приводит к почти гамильтонову поведению. Ключевые слова: неголономная связь, тензорные инварианты, первый интеграл, инвариантная мера, интегрируемость, конформно-гамильтонова система, резиновое качение, обратимость, инволюция. ![]() A.V. Borisov, I.S. Mamaev, I.A. Bizyaev. The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere. Rus. J. Nonlin. Dyn., 2013, V.9, №2, p. 141-202 Abstract In this paper, we investigate the dynamics of systems describing the rolling without slipping and spinning (rubber rolling) of various rigid bodies on a plane and a sphere. It is shown that a hierarchy of possible types of dynamical behavior arises depending on the body’s surface geometry and mass distribution. New integrable cases and cases of existence of an invariant measure are found. In addition, these systems are used to illustrate that the existence of several nontrivial involutions in reversible dissipative systems leads to quasi-Hamiltonian behavior. Keywords: nonholonomic constraint, tensor invariant, first integral, invariant measure, integrability, conformally Hamiltonian system, rubber rolling, reversible, involution. |
|||||||||||